Modulation of gamma and alpha spinal motor neurons activity by trans‐spinal direct current stimulation: effects on reflexive actions and locomotor activity
نویسنده
چکیده
Spontaneous and evoked spinal activities interact to set the characteristics of emergent motor responses. Gamma motor neurons have feedforward and feedback functions in motor control, which are crucial for transforming motor commands into action. Meanwhile, the intrinsic excitability and functional connectivity of alpha motor neurons determine the accuracy of actions. In this study, we investigated the effects of trans-spinal direct current stimulation (tsDCS) on spontaneous and cortically evoked activity of well-isolated single units of gamma and alpha motor neurons in mice. We also investigated the effects of tsDCS on reflexive and locomotor actions. In general, motor neurons showed increased responses to cathodal tsDCS (c-tsDCS) and decreased responses to anodal tsDCS (a-tsDCS). These effects were observed for cortically evoked discharges and spontaneous firing rates of gamma motor neurons, cortically evoked discharges of larger alpha motor neurons, and spontaneous firing rates of smaller alpha motor neurons. An exception was that spontaneous firing rates of larger alpha motor neurons showed the opposite pattern of reduction by c-tsDCS and increase by a-tsDCS. Reflexive and voluntary behavior were also increased by c-tsDCS and reduced by a-tsDCS. Specifically, the amplitude and duration of crossed and tail pinch reflexes in decerebrate animals and the quality of ground and treadmill walking patterns in healthy awake animals showed this pattern. These polarity-specific changes in behavior could be attributed to polarity-mediated modulation of alpha and gamma motor neuron activity and spinal circuitry. The results reveal an important principle: effects of tsDCS on spinal motor neurons depend on current polarity and cell size.
منابع مشابه
Serotonergic modulation of spinal motor control.
Serotonin (5-HT) is a monoamine that powerfully modulates spinal motor control by acting on intrasynaptic and extrasynaptic receptors. Here we review the diversity of 5-HT actions on locomotor and motoneuronal activities. Two approaches have been used on in vitro spinal cord preparations: either applying 5-HT in the extracellular medium or inducing its synaptic release. They produced strikingly...
متن کاملStimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors.
Locomotion can be induced in rodents by direct application 5-hydroxytryptamine (5-HT) onto the spinal cord. Previous studies suggest important roles for 5-HT7 and 5-HT2A receptors in the locomotor effects of 5-HT. Here we show for the first time that activation of a discrete population of 5-HT neurons in the rodent brain stem produces locomotion and that the evoked locomotion requires 5-HT7 and...
متن کاملTrans-spinal direct current stimulation alters muscle tone in mice with and without spinal cord injury with spasticity.
Muscle tone abnormalities are associated with many CNS pathologies and severely limit recovery of motor control. Muscle tone depends on the level of excitability of spinal motoneurons and interneurons. The present study investigated the following hypotheses: (1) direct current flowing from spinal cord to sciatic nerve [spinal-to-sciatic direct current stimulation (DCS)] would inhibit spinal mot...
متن کامل5-HT2 and 5-HT7 receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons
There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal ...
متن کاملInteractions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord
We investigated whether dorsal (DR) and ventral root (VR) stimulus trains engage common postsynaptic components to activate the central pattern generator (CPG) for locomotion in the neonatal mouse spinal cord. VR stimulation did not activate the first order interneurons mediating the activation of the locomotor CPG by sacrocaudal afferent stimulation. Simultaneous stimulation of adjacent dorsal...
متن کامل